光伏行業現階段光伏電站以集中式為主導,從長期看分布式的占比將會有所回升,終形成集中式和分布式電站兩者并重的格局。數據顯示,2019年大型地面集中式光伏電站約占光伏應用市場的六成;分布式電站約占四成。隨著特高壓外送項目、大型平價基地項目的實施,預計未來幾年大型地面電站的裝機量占比將進一步上升,集中式光伏電站占比仍會有所上升。
近年來光伏組件呈現高功率化的變動趨勢。未來,受益于各種類型電池組件功率的提升,異質結、N-PERT/TOPCon高功率電池片的不斷普及等多重因素疊加作用,光伏組件功率將不斷上升。數據顯示,2017年至2019年,國內光伏電站的光伏組件平均功率分別為313W、331W及358W。預測2023年我國光伏組件平均功率為420W。
柔性支架采用兩固之間張拉預應力鋼絞線的方式,兩固采用鋼性基礎提供反力,可實現10~30 m大間距。這種設計可規避山地起伏、植被較高等不利因素,僅在合適的部位設置基礎點并張拉預應力鋼絞線;同時在水深較深的漁塘也可以在保持水位不動的條件下,實現基礎及柔性支架的施工。
設計中,鋼絞線作為組件安裝的固定支架,計算時需考慮自重,以及風壓、雪壓不同荷載組合下的工況,并進行受力分析。區別于傳統支架的剛性變形要求的嚴格限制( 主梁為L/250,次梁為L/200[1]),柔性支架對變形沒有嚴格限制,目前可根據實際情況采用撓度容許值L/30~L/15,在這種變形條件下不影響鋼絞線的力學性能,因此,柔性支架可以更好地適應大跨度方案,同時可控制好總造價。
在太陽能電池方陣支架結構設計中,一個需要非常重視的問題就是抗風設計。依據太陽能電池方陣廠家的技術參數資料,太陽能電池方陣可以承受的迎風壓強為2700Pa。若抗風系數選定為27m/s(相當于十級臺風),根據非粘性流體力學,太陽能電池方陣承受的風壓只有365Pa。所以,組件本身是完全可以承受27m/s的風速而不至于損壞的。所以,設計中關鍵要考慮的是太陽能電池方陣支架設計、基礎設計和支架與基礎的連接設計。太陽能電池方陣支架與基礎的連接設計應使用螺栓桿固定連接方式。